Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus.

نویسندگان

  • P O'Donnell
  • A Lavín
  • L W Enquist
  • A A Grace
  • J P Card
چکیده

One of the primary outputs of the nucleus accumbens is directed to the mediodorsal thalamic nucleus (MD) via its projections to the ventral pallidum (VP), with the core and shell regions of the accumbens projecting to the lateral and medial aspects of the VP, respectively. In this study, the multisynaptic organization of nucleus accumbens projections was assessed using intracerebral injections of an attenuated strain of pseudorabies virus, a neurotropic alpha herpesvirus that replicates in synaptically linked neurons. Injection of pseudorabies virus into different regions of the MD or reticular thalamic nucleus (RTN) produced retrograde transynaptic infections that revealed multisynaptic interactions between these areas and the basal forebrain. Immunohistochemical localization of viral antigen at short postinoculation intervals confirmed that the medial MD (m-MD) receives direct projections from the medial VP, rostral RTN, and other regions previously shown to project to this region of the thalamus. At longer survival intervals, injections confined to the m-MD resulted in transynaptic infection of neurons in the accumbens shell but not in the core. Injections that also included the central segment of the MD produced retrograde infection of neurons in the lateral VP and the polymorph (pallidal) region of the olfactory tubercle (OT) and transynaptic infection of a small number of neurons in the rostral accumbens core. Injections in the lateral MD resulted in retrograde infection in the globus pallidus (GP) and in transynaptic infection in the caudate-putamen. Viral injections into the rostroventral pole of the RTN infected neurons in the medial and lateral VP and at longer postinoculation intervals, led to transynaptic infection of scattered neurons in the shell and core. Injection of virus into the intermediate RTN resulted in infection of medial VP neurons and second-order infection of neurons in the accumbens shell. Injections in the caudal RTN or the lateral MD resulted in direct retrograde labeling of cells within the GP and transynaptic infection of neurons in the caudate-putamen. These results indicate that the main output of VP neurons receiving inputs from the shell of the accumbens is heavily directed to the m-MD, whereas a small number of core neurons appear to influence the central MD via the lateral VP. Further segregation in the flow of information to the MD is apparent in the organization of VP and GP projections to subdivisions of the RTN that give rise to MD afferents. Collectively, these data provide a morphological basis for the control of the thalamocortical system by ventral striatal regions, in which parallel connections to the RTN may exert control over activity states of cortical regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudorabies virus-induced leukocyte trafficking into the rat central nervous system.

When the swine alphaherpesvirus pseudorabies virus (PRV) infects the rat retina, it replicates in retinal ganglion cells and invades the central nervous system (CNS) via anterograde transynaptic spread through axons in the optic nerve. Virus can also spread to the CNS via retrograde transport through the oculomotor nucleus that innervates extraocular muscles of the eye. Since retrograde infecti...

متن کامل

Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits.

Intravitreal injection of the attenuated strain of pseudorabies virus (PRV Bartha) results in transneuronal spread of virus to a restricted set of central nuclei in the rat and mouse. We examined the pattern of central infection in the golden hamster after intravitreal inoculation with a recombinant strain of PRV Bartha constructed to express enhanced green fluorescent protein (PRV 152). Neuron...

متن کامل

Effect of morphine on apoptotic factors caspase-3, PARP and Bax/Bcl-2 ratio in nucleus accumbens in conditioned place preference model in rat

Introduction: Nucleus accumbens (NAc) plays a critical role in neuronal reward circuits that are responsible for motivated and goal-directed behaviors. Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have beneficial effects against neuronal cell death. This study was designed to evaluate the effect of morphine on apoptosis in the N...

متن کامل

Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens.

Afferents to the prefrontal cortex (PFC) from dopamine neurons in the ventral tegmental area have been implicated in working memory processes and in the pathogenesis of schizophrenia. Previous anatomical investigations have demonstrated that dopamine terminals synapse on dendritic spines and shafts of pyramidal cells in the PFC. Moreover, neurochemical and physiological studies suggest that dop...

متن کامل

Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits.

Physiological properties of central nervous system neurons infected with a pseudorabies virus were examined in vitro by using whole-cell patch-clamp techniques. A strain of pseudorabies virus (PRV 152) isogenic with the Bartha strain of PRV was constructed to express an enhanced green fluorescent protein (EGFP) from the human cytomegalovirus immediate early promoter. Unilateral PRV 152 injectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 1997